Exploring Molecular Shapes

1) On a separate sheet of paper do the following for each of the molecules listed below.

- Draw the Lewis Dot Diagram
- Draw the structural diagram
- Draw a three dimensional sketch of how you predict the molecule will look with enough room for you to add bond angles and lengths.

Do this for the following:
$\mathrm{CH}_{4} \quad \mathrm{NH}_{3} \quad \mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{C}_{3} \mathrm{H}_{6} \quad \mathrm{C}_{3} \mathrm{H}_{4} \quad \mathrm{CH}_{4} \mathrm{O}$
2) Go to the following URL to check your predictions: http://chemsite.Isrhs.net/j_peroidic_table/molecule_exercise.html
3) Measure the bond angles of all the atoms in the molecules and the carbon/carbon bond lengths for $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{3} \mathrm{H}_{6}$, and $\mathrm{C}_{3} \mathrm{H}_{4}$.
4) What relationship do you notice about the length of single, double, and triple bonds?
5) Why did the bond angle get more acute as you measured the following molecules? $\mathrm{CH}_{4} \quad \mathrm{NH}_{3} \quad \mathrm{H}_{2} \mathrm{O}$ (Hint: Think about how and why the atoms are being repelled at all.)
6) Given the following molecule (methacrylonitrile) $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}$:

Draw the structural formula and a 3d sketch which includes predicted bond angles.
7) Go to some of the websites listed below and find a moleclue which shows an example of each of the common shapes: Tetrahedral, Trigonal Pyramidal, Trigonal Planar, Bent, and Linear.

You can find many molecules at the following websites:

- www.webmolecules.com
- www.ch.ic.ac.uk/vchemlib/mol/mol.html
- www.wellesley.edu/Chemistry/Flick/molecules/newlist.html
- www.nysaes.cornell.edu/fst/faculty/acree/flavornet/chem.html
- www.sci.ouc.bc.ca/chem/molecule/molecule.html

