Exploring Molecular Shapes

- 1) On a separate sheet of paper do the following for each of the molecules listed below.
 - Draw the Lewis Dot Diagram
 - Draw the structural diagram
 - Draw a three dimensional sketch of how you predict the molecule will look with enough room for you to add bond angles and lengths.

Do this for the following: CH₄ NH₃ H₂O C₃H₈ C₃H₆ C₃H₄ CH₄O

- 2) Go to the following URL to check your predictions: http://chemsite.lsrhs.net/j_peroidic_table/molecule_exercise.html
- 3) Measure the bond angles of all the atoms in the molecules and the carbon/carbon bond lengths for C₃H₈, C₃H₆, and C₃H₄.
- 4) What relationship do you notice about the length of single, double, and triple bonds?

5) Why did the bond angle get more acute as you measured the following molecules? CH₄ NH₃ H₂O (Hint: Think about how and why the atoms are being repelled at all.)

6) Given the following molecule (methacrylonitrile) C₄H₅N: H

Draw the structural formula and a 3d sketch which includes predicted bond angles.

7) Go to some of the websites listed below and find a moleclue which shows an example of each of the common shapes: **Tetrahedral**, **Trigonal Pyramidal**, **Trigonal Planar**, **Bent**, and **Linear**.

You can find many molecules at the following websites:

- www.webmolecules.com
- www.ch.ic.ac.uk/vchemlib/mol/mol.html
- www.wellesley.edu/Chemistry/Flick/molecules/newlist.html
- www.nysaes.cornell.edu/fst/faculty/acree/flavornet/chem.html
- www.sci.ouc.bc.ca/chem/molecule/molecule.html